• 热点研报
  • 精选研报
  • 知名分析师
  • 经济数据库
  • 个人中心
  • 用户管理
  • 我的收藏
  • 我要上传
  • 云文档管理
  • 我的云笔记
  • 国海证券-计算机行业开启AI新篇章:人工智能系列深度报告,AIGC行业综述篇-230320

    日期:2023-03-20 15:02:19 研报出处:国海证券
    行业名称:计算机行业
    研报栏目:行业分析 陈梦竹  (PDF) 65 页 1,768 KB 分享者:v**a
    请阅读并同意免责条款

    【免责条款】

    1. 用户直接或通过各类方式间接使用慧博投研资讯所提供的服务和数据的行为,都将被视作已无条件接受本声明所涉全部内容;若用户对本声明的任何条款有异议,请停止使用慧博投研资讯所提供的全部服务。

    2. 用户需知,研报资料由网友上传,所有权归上传网友所有,慧博投研资讯仅提供存放服务,慧博投研资讯不保证资料内容的合法性、正确性、完整性、真实性或品质;

    3. 任何单位或个人若认为慧博投研资讯所提供内容可能存在侵犯第三人著作权的情形,应该及时向慧博投研资讯提出书面权利通知,并提供身份证明、权属证明及详细侵权情况证明。慧博投研资讯将遵循"版权保护投诉指引"处理该信息内容;

    4.本条款是本站免责条款的附则,其他更多内容详见本站底部《免责声明》

    研究报告内容
    分享至:      

      本篇报告主要解答了以下问题:AI、AIGC当下发展处于什么阶段?未来将呈现怎样的趋势?AIGC的核心生产要素是什么?各生产要素的发展趋势如何?NLP、CV、ASR、TTS算法及发展?ChatGPT为何“火爆出圈”?AIGC包括什么?已有哪些产品?应用现状及前景如何?有哪些企业进行了布局?商业模式如何?

      ◆行业发展:人工智能步入新发展阶段,逐步迈向AGI;AIGC拥抱人类,创造人机交互新变革,将迎来更多新机遇。http://www.hibor.com.cn【慧博投研资讯】人工智能从理论发展分为四个阶段:规则导向、机器学习、深度学习、自主学习阶段,目前处于深度学习阶段;从应用成熟度可分为三个阶段:弱人工智能阶段(ANI)、强人工智能阶段(AGI)、超人工智能阶段(ASI),目前处于ANI阶段;从应用类型可分为四种:感知式AI与分析式AI应用较成熟,决策式AI近年来发展迅速,生成式AI迎来突破。http://www.hibor.com.cn(慧博投研资讯)生成式AI,即AIGC,较传统内容创作模式UGC、PGC可实现更大数量、更高质量、更低单位成本,未来将从辅助创作生成趋向高度自动化自主创造。此外,AIGC将赋能多领域,加速人机共生的建设,迎接更多机遇与挑战。

      ◆技术进步:算力是支撑,数据是瓶颈,算法迎来突破。算力层,近年来大模型流行,模型参数量迅速膨胀,所需计算资源越来越大,算力是AIGC核心生产要素;而AI芯片全球短缺,美对华芯片制裁升级,我们认为国内短期算力充足,长期仍需要逐步实现AI芯片国产化替代。数据是机器学习的核心,AI发展的瓶颈,数据决定模型质量的上限;大模型训练需要海量且优质数据,AI对数据训练集的消耗量远大于人类数据生产的速度,专业领域、图像视频等数据获取和标注成本也将越来越高,我们认为加速商业化,实现数据反哺是对提高数据量、降成本的重要解决办法。算法层,近年来迎来不少突破,过去NLP领域以RNN及其变体为主,CV领域以CNN及其变体为主,但各有优劣,Transformer架构突破了RNN不能并行计算的限制,较CNN有更好的计算局部特征间的关联等,自2017年开始在NLP领域应用、变种升级,Transformer在多模态的发展和应用将让AI越来越多的向人类推理方式靠近,以实现AGI。AIGC包括文本/音频/图像/视频/代码/3D/数字人/跨膜态生成等,目前文本、音频和图像领域都迎来较大突破,图像生成的突破是Difussion的出现,文本生成的突破则是GPT的出现,AIGC基本采用GAN算法,算法及产品越来越丰富多元,AI因AIGC的蓬勃发展,已开启技术与应用的新篇章。

      ◆应用概览:技术突破实现应用创新。AI小模型是过去主流的研究和应用方向,在B端部分行业、赛道已有不少企业布局,预计未来仍将依托其细分行业、细分赛道的先发优势和数据、项目实施经验、产品优势等壁垒仍将有较好的发展。但大模型尚未实现商业价值闭环,未来需要重点关注数据、算法层面的突破与变革,探索新的商业模式,目前已在影视、传媒、电商、C端娱乐规模应用,游戏领域逐步应用,金融、工业、医疗、法律、设计等专业领域还在持续拓展。

      ◆产业布局:科技巨头全面布局,中下游厂商百花齐放。国外主要以微软、谷歌、Meta为主,国内以百度、腾讯、阿里、华为等为主,既拥有充足的算力支撑,又有优秀的人才团队,多年算法、数据积累,在大模型领域的发展及应用具备天然优势。上游除云厂商外,还有光通信厂商、数据服务商、算力相关设备厂商,将较大程度受益于大模型发展带来的更多计算资源和数据需求。中游有商汤、科大讯飞、旷视、拓尔思等企业多年细分领域布局,部分也有一定算力储备,垂直行业细分赛道深耕,相关技术、数据储备丰富。下游主要是受益于AIGC对业务的驱动、降本增效,空间较大,多行业公司均将逐步受益。

      ◆商业模式:商业化初启,期待产业生态、技术与产品发展完善。小模型在B端已应用多年,大模型商业刚刚开始,主要是MaaS,包括大模型厂商自用,实现增量或降本增效;云厂商“MaaS+IaaS”打包输出;替代翻译、美工、原画师、程序员、分析师、设计师等繁琐重复的低端工作等。大模型商业价值闭环未成,国内SaaS生态、付费意识较差,商业落地还需要各行各业共同发展、相互奔赴,共建良好产业生态。

      ◆风险提示:人工智能发展不及预期,AIGC发展不及预期;技术发展不及预期;商业化拓展不及预期;行业竞争加剧风险;中美科技竞争不确定性风险。

    我要报错
    点击浏览报告原文
    数据加工,数据接口
    我要给此报告打分: (带*号为必填)
    关闭
    如果觉得报告不错,扫描二维码可分享给好友哦!
     将此篇报告分享给好友阅读(微信朋友圈,微信好友)
    小提示:分享到朋友圈可获赠积分哦!
    操作方法:打开微信,点击底部“发现”,使用“扫一扫”即可分享到微信朋友圈或发送给微信好友。
    *我要评分:

    为了完善报告评分体系,请在看完报告后理性打个分,以便我们以后为您展示更优质的报告。

    您也可以对自己点评与评分的报告在“我的云笔记”里进行复盘管理,方便您的研究与思考,培养良好的思维习惯。

    当前终端的在线人数: 104752
    温馨提示
    扫一扫,慧博手机终端下载!

    正在加载,请稍候...